Scientific Transactionsin Environment and Technovation

On Intuitionistic Fuzzy Relations

רttps://doi.org/10.56343/STET.116.011.002.005

A. Varghese ${ }^{1 *}$ and S. Kuriakose ${ }^{2}$

${ }^{1}$ Department of Mathematics, St. Peter's College, Kolenchery, Kerala, India.
${ }^{2}$ Professor and Dean, Federal Institute of Science and Technology, Mookannoor, Ernakulam, Kerala, India.

Abstract

In this paper, we study Intuitionistic Fuzzy Relations defined on an intuitionistic fuzzy set which is observed to be a generalization of the intuitionistic fuzzy relation already in existence and are also extensions of generalized fuzzy relations. Some properties of such relations are also studied.

Key words: Intuitionistic fuzzy set, intuitionistic fuzzy relation, composition
Received : January 2017
Revised and Accepted : October 2017

INTRODUCTION

Fuzzy binary relations explain the extent to which elements in the set arerelated. It was later general ized in Chakraborthy et al., (1983) by considering it as a relation between fuzzy sets. K. T. A tanassov (1986) later introduced Intuitionistic fuzzy sets (IFS) by incorporating non membership gradein a fuzzy set. Intuitionistic fuzzy relations (IFRS) has al ready been studied by many researchers. Commonly IFRs are IFSs in a Cartesian product of universes (Bustince et al.,1986). Here an attempt is madeto extend IFRs to a relation between two IFSs.

Thenotion of general ized IFRsisintroduced in Section 2. Then various binary and unary operations of these relations are defined. Throughout this paper, unless otherwisestated, by a re ation, we mean intuitionistic fuzzy binary relation defined on IFSsover the universe U.

Definition 1.1. (A tanasov,1986) Let X be an ordinary (non fuzzy) set $A n$ intuitionistic fuzzy set A in X is given by
$\mathrm{A}=\left\{\left(x, \mu_{A}(x), v_{A}(x)\right) / x \in X\right\}$
where $\mu_{A}: X \rightarrow[0,1], v_{A}: X \rightarrow[0,1]$
with the condition $0 \leq \mu_{A}(x)+v_{A}(x) \leq 1$ for all $x \mathrm{x}$.

Definition 1.2. (Bustinceet al.,1986) An intuitionistic fuzzy relation is an intuitionistic fuzzy subset of $X \times$ Y, that is, is an expression R given by

[^0]P-ISSN 0973-9157
$R=\left\{\left((x, y), \mu_{R}(x, y), v_{R}(x, y)\right) \mid x \in X, y \in Y\right\}$
where $\mu_{R}: X \times Y \rightarrow[0,1], v_{R}: X \times Y \rightarrow[0,1]$
satisfy the condition $0 \leq \mu_{\mathrm{R}}(\mathrm{x}, \mathrm{y})+v_{\mathrm{R}}(\mathrm{x}, \mathrm{y}) \leq 1$
for any $(x, y) \in X \times Y$
Definition 1.3. (Chakraborthy et al., 1983) Let U bethe initial set and A, B befuzzy subsets of U defined by the membership functions μ_{A} and μ_{B} respectively where the membership set is
$[0,1]$. $A \times B$ is thefuzzy subset of $U \times 4$ defined by $\mu_{A \times B}\left(x_{\underline{t}}\right)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ for all $x, y \quad U$.
Let $R \quad A \times B$.
That is, $\mu_{R}(x, y) \leq \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$. Then R is a fuzzy relation fromA to B.

Relations on intuitioinistic fuzzy sets.

Let U be any nonempty set and A, B beIFS in U given by themembership functions μ_{A}, μ_{B} respectively and the nonmembership functions v_{A}, v_{B} respectively where
$\mu_{A}, \mu_{B}, v_{A}, v_{B}: U \rightarrow[0,1]$.
$A \times B$ is the IFS in $\mathrm{U} \times \mathrm{U}$ defined by
$\mu_{A \times B}(x, y)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$
$v_{A \times B}(x, y)=\max \left\{v_{A}(x), v_{B}(y)\right\}$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.
Definition 2.1 (V arghese et al., 2012) Let $R \subseteq A \times B$
i.e., $\quad \mu_{R}(x, y) \leq \mu_{A \times B}(x, y)$ and
$v_{R}(x, y) \geq v_{A \times B}(x, y)$
with the condition that

$$
0 \leq \mu_{R}(x, y)+v_{R}(x, y) \leq 1
$$

Then R is an IFR from A to B

D efinition 2.2 (V arghese et al., 2012)

Let R, R_{1}, R_{2} belFRsfrom A to B
Then $R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1}+R_{2}, R_{1} . R_{2}, R_{1} \cup R_{2}, R_{1} \cap R_{2}$,
$R_{1} \square R_{2}, R_{1} \otimes R_{2}, \quad \bar{R}$ and R^{-1} are defined as follows:

1. $\quad \mu_{R_{1} \cup R_{2}}(x, y)=\max \left\{\mu_{R_{1}}(x, y), \mu_{R_{2}}(x, y)\right\}$
$v_{R_{1} \cup R_{2}}(x, y)=\min \left\{v_{R_{1}}(x, y), v_{R_{2}}(x, y)\right\}$
2. $\mu_{R_{1} \cap R_{2}}(x, y)=\min \left\{\mu_{R_{1}}(x, y), \mu_{R_{2}}(x, y)\right\}$
$v_{R_{1} \cap R_{2}}(x, y)=\max \left\{v_{R_{1}}(x, y), v_{R_{2}}(x, y)\right\}$
3. $\quad \mu_{R_{1}+R_{2}}(x, y)=\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)-\mu_{R_{1}}(x, y) \mu_{R_{2}}(x, y)$
$v_{R_{1}+R_{2}}(x, y)=v_{R_{1}}(x, y) \nu_{R_{2}}(x, y)$
4. $\quad \mu_{R_{1} \cdot R_{2}}(x, y)=\mu_{R_{1}}(x, y) \mu_{R_{2}}(x, y)$
$v_{R_{1} R_{2}}(x, y)=v_{R_{1}}(x, y)+v_{R_{2}}(x, y)-v_{R_{1}}(x, y) v_{R_{2}}(x, y)$
5. $\quad \mu_{R_{1} \cup R_{2}}(x, y)=\min \left\{1, \mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)\right\}$
$v_{R_{1} \cup R_{2}}(x, y)=\max \left\{0, v_{R_{1}}(x, y)+v_{R_{2}}(x, y)-1\right\}$
6. $\quad \mu_{R_{1} \cap R_{2}}(x, y)=\max \left\{0, \mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)-1\right\}$
$v_{R_{1} \cap R_{2}}(x, y)=\min \left\{1, v_{R_{1}}(x, y)+v_{R_{2}}(x, y)\right\}$
7. $\mu_{R_{\square} \square R_{2}}(x, y)=\frac{\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)}{2}$
$v_{R_{1} \square R_{2}}(x, y)=\frac{v_{R_{1}}(x, y)+v_{R_{2}}(x, y)}{2}$
8. $\quad \mu_{R_{1} \otimes R_{2}}(x, y)=\sqrt{\mu_{R_{1}}(x, y) \mu_{R_{2}}(x, y)}$
$v_{R_{1} \otimes R_{2}}(x, y)=\sqrt{v_{R_{1}}(x, y) v_{R_{2}}(x, y)}$
9. $\mu_{\bar{R}}(x, y)=\min \left\{1-\mu_{R}(x, y), \mu_{\mathrm{A} \times \mathrm{B}}(x, y)\right\}$
$v_{\bar{R}}(x, y)=\max \left\{1-v_{R}(x, y), v_{A X B}(x, y)\right\}=C(x, y), i f 0 \leq \mu_{\bar{R}}(x, y)+C(x, y) \leq 1$

$$
\mu_{R}(x, y), \quad \text { if } \mu_{\bar{R}}(x, y)+C(x, y)>1
$$

10. $\mu_{R^{-1}}(x, y)=\mu_{R}(y, x)$

$$
v_{R^{-1}}(x, y)=v_{R}(y, x)
$$

$$
\forall x, y \in U
$$

N ote 1

If A and B are ordinary subsets of U, then
$\mu_{A \times B}(x, y)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}=1$
$v_{A \times B}(x, y)=\max \left\{v_{A}(x), v_{B}(y)\right\}=0$
for all $x \in A, y \in B$. Then R is an IFR from A to B if $\mu_{\mathrm{R}}(\mathrm{x}, \mathrm{y}) \leq 1, v_{\mathrm{R}}(\mathrm{x}, \mathrm{y}) \geq 0,0 \leq \mu_{\mathrm{R}}(\mathrm{x}, \mathrm{y})+v_{\mathrm{R}}(\mathrm{x}, \mathrm{y}) \leq 1$.
This coincides with the definition of IFR in the cartesian product of universes.

N ote 2

If A and B arefuzzy subsets of U, then this definition of R coincides with the definition of fuzzy relation in (Chakraborthy et al., 1983) where $\mu_{\mathrm{R}}(\mathrm{x}, \mathrm{y}) \mathrm{d}^{\prime \prime} \mu_{\mathrm{A} \times \mathrm{B}}(\mathrm{x}, \mathrm{y})$.

Note 3

If R is a relation from A to B, then R^{-1} is a relation from B to A $\mu_{R^{-1}}(x, y) \leq \mu_{B \times A}(x, y)$ as in (Chakraborthy et al., 1983)

$$
\begin{gathered}
v_{R^{-1}}(x, y)=v_{R}(y, x) \geq \max \left\{v_{A}(y), v_{B}(x)\right\} \\
=v_{B \times A}(x, y)
\end{gathered}
$$

N ote 4

We use the following matrix representation for membership and nonmembership functions. If the universal set $U=\left\{a_{1}, a_{2}, \ldots . . a_{n}\right\}$ and if G is an IFS in $U x$ U with membership function and nonmembership function, then and will be described in matrix notation as,

$$
\begin{aligned}
& \mu_{G}:\left(\begin{array}{lll}
\mu_{G}\left(a_{1}, a_{1}\right) & \mu_{G}\left(a_{2}, a_{1}\right) & \ldots \ldots . \mu_{G}\left(a_{n}, a_{1}\right) \\
\mu_{G}\left(a_{1}, a_{2}\right) & \mu_{G}\left(a_{2}, a_{2}\right) & \ldots \ldots \mu_{G}\left(a_{n}, a_{2}\right) \\
\ldots \ldots \ldots . & \ldots \ldots \ldots \ldots . & \ldots \ldots \ldots \ldots \ldots . \\
\mu_{G}\left(a_{1}, a_{n}\right) & \mu_{G}\left(a_{2}, a_{n}\right) & \ldots \ldots . \mu_{G}\left(a_{n}, a_{n}\right)
\end{array}\right) \\
& \text { and } \\
& v_{G}:\left(\begin{array}{lll}
v_{G}\left(a_{1}, a_{1}\right) & v_{G}\left(a_{2}, a_{1}\right) & \ldots \ldots . v_{G}\left(a_{n}, a_{1}\right) \\
v_{G}\left(a_{1}, a_{2}\right) & v_{G}\left(a_{2}, a_{2}\right) & \ldots \ldots . v_{G}\left(a_{n}, a_{2}\right) \\
\ldots \ldots . . & \ldots \ldots . \ldots . . & \ldots \ldots \\
v_{G}\left(a_{1}, a_{n}\right) & v_{G}\left(a_{2}, a_{n}\right) & \ldots \ldots . v_{G}\left(a_{n}, a_{n}\right)
\end{array}\right)
\end{aligned}
$$

Theorem 2.1

If R_{1} and R_{2} are intuitionistic fuzzy relations from A to B, then
(i) $\quad R_{1} \subseteq R_{2} \Rightarrow R_{1}^{-1} \subseteq R_{2}^{-1}$ $\left(R_{1}^{-1}\right)^{-1}=R_{1}$
(iii) $\quad\left(R_{1} * R_{2}\right)^{-1}=R_{1}^{-1} * R_{2}^{-1}$ where * stands for $\cup, \cap,+, ., \cup, \cap, \square, \otimes$

Proof

For the case of membership function, thetheorem has been proved (Chakraborthy et al., 1983). But we prove the case of nonmembership function.
(i)

$$
\begin{gathered}
\mu_{R_{1}^{-1}}(y, x) \leq \mu_{R_{2}^{-1}}(y, x) \\
v_{R_{1}^{-1}}(y, x) \geq v_{R_{2}^{-1}}(y, x) \text { since } R_{1} \subseteq R_{2}
\end{gathered}
$$

(ii) $\quad \mu_{\left(R_{1}^{-1}\right)^{-1}}(x, y)=\mu_{R_{1}}(x, y)$

$$
v_{\left(R_{1}^{-1}\right)^{-1}}(x, y)=v_{R_{1}^{-1}}(y, x)=v_{R_{1}}(x, y)
$$

(iii)

$$
\begin{aligned}
& \mu_{\left(R_{1} * R_{2}\right)^{-1}}(x, y)=\mu_{R_{1}^{-1} * R_{2}-1}(x, y) \\
& v_{\left(R_{1} * R_{2}\right)^{-1}}(x, y)=v_{R_{1} * R_{2}}(y, x)=v_{R_{1}^{-1} * R_{2}^{-1}}(x, y)
\end{aligned}
$$

in all cases.
Definition 2.3 Thecomposition of two IFRs R_{1} and R_{2} is defined by

$$
\begin{aligned}
& \mu_{R_{1} \circ R_{2}}(x, y)=\max _{z \in U}\left[\min \left(\mu_{R_{1}}(x, z), \mu_{R_{2}}(z, y)\right)\right] \text { and } \\
& v_{R_{1} R_{2}}(x, y)=\min _{z \in U}\left[\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right)\right]
\end{aligned}
$$

where R_{1} is a relation from A to B and R_{2} is a relation from B to C.

Lemma 2.1

If $a, b, c, d, e, f, g, h \in[0,1], 0 \leq a+e \leq 1,0 \leq b+f \leq 1$, $0 \leq c+g \leq 1,0 \leq d+h \leq 1$, then $\max [\min (a, b)$, $\min (\mathrm{c}, \mathrm{d})]+\min [\max (\mathrm{e}, \mathrm{f}), \max (\mathrm{g}, \mathrm{h})] \leq 1$

Proof of the lemma :
Wehave, $\mathrm{e} \leq 1-\mathrm{a}, \mathrm{f} \leq 1-\mathrm{b}$
So $\max (\mathrm{e}, \mathrm{f}) \leq \max (1-\mathrm{a}, 1-\mathrm{b})$
Similarly $\max (\mathrm{g}, \mathrm{h}) \leq \max (1-\mathrm{c}, 1-\mathrm{d})$
$\min [\max (\mathrm{e}, \mathrm{f}), \max (\mathrm{g}, \mathrm{h})] \leq \min [\max (1-\mathrm{a}, 1-\mathrm{b})$, $\max (1-c, 1-\mathrm{d})]$
So L.H.S. $\leq \max [\min (a, b), \min (c, d)]+\min$ [max (1-a, 1-b), $\max (1-c, 1-d)]$

$$
=\max [\min (\mathrm{a}, \mathrm{~b}), \min (\mathrm{c}, \mathrm{~d})]+
$$

$$
=1
$$

$$
\min [1-\min (a, b), 1-\min (c, d)]
$$

Theorem 2.2

Let R_{1} be a relation from A to B and $R_{2} a$ relation from B to C ,
then $R_{1} \circ R_{2}$ is a relation from A to C .
Proof
$\mu_{R_{1} \circ R_{2}}(x, y) \leq \min \left[\mu_{A}(x), \mu_{C}(y)\right]$ as in
(Chakraborthy et al., 1983)
For each $z \in U$,
$v_{R_{1}}(x, z) \geq \max \left[v_{A}(x), v_{B}(z)\right]$
$v_{R_{2}}(z, y) \geq \max \left[v_{B}(z), v_{C}(y)\right]$
In all the six cases of ordering of $v_{A}(x), v_{B}(z), v_{C}(y)$,

$$
\begin{array}{r}
\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right) \geq \max \left[v_{A}(x), v_{C}(y)\right] \\
\text { So } \min _{z \in U}\left[\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right)\right] \geq \max \left[v_{A}(x), v_{C}(y)\right]
\end{array}
$$

By lemma 2.1, it follows that

$$
0 \leq \mu_{R_{1} \circ R_{2}}(x, y)+v_{R_{1} \circ R_{2}}(x, y) \leq 1
$$

Some properties of composition are given in the next theorem.

Theorem 2.3

(i) $R_{1} \circ R_{2} \neq R_{2} \circ R_{1}$ where R_{1} and R_{2} are IFRs on A.
(ii) (a) Let R_{1} be a relation from A to B, R_{2} and R_{3} are relations from B to C and $*$ stands for any of $\cap,+, ., \cup, \cap, \square, \otimes$.
Then $R_{1} \circ\left(R_{2} * R_{3}\right) \neq\left(R_{1} \circ R_{2}\right) *\left(R_{1} \circ R_{3}\right)$
(b) $R_{1} \circ\left(R_{2} \cup R_{3}\right)=\left(R_{1} \circ R_{2}\right) \cup\left(R_{1} \circ R_{3}\right)$
(iii) $\quad R_{1} \subseteq R_{2} \Rightarrow R_{1} \circ R_{3} \subseteq R_{2} \circ R_{3}$ where R_{1}, R_{2} are relations from A to B and R_{3} is a relation from B to C.
(iv) $\quad\left(R_{1} \circ R_{2}\right)^{-1}=R_{2}^{-1} \circ R_{1}^{-1}$ where R_{1} is a relation from A to B and R_{2} is relation from B to C

Proof
We will prove this by a counter example.
Let $U=\{a, b, c\}$ and A be given by
$\mu_{A}(a)=.7, \mu_{A}(b)=.8, \mu_{A}(c)=.8$
$v_{A}(a)=v_{A}(b)=.1, v_{A}(c)=.5$
Then

$$
\mu_{A \times A}:\left(\begin{array}{lll}
.7 & .7 & .2 \\
.7 & .8 & .2 \\
.2 & .2 & .2
\end{array}\right), v_{A \times A}:\left(\begin{array}{ccc}
.1 & .1 & .5 \\
.1 & .1 & .5 \\
.5 & .5 & .5
\end{array}\right)
$$

This completes the proof of the lemma.
P-ISSN 0973-9157
E-ISSN 2393-9249
October to December 2017

Let R_{1}, R_{2} be relations on A defined by
$\mu_{R_{1}}:\left(\begin{array}{ccc}.6 & .7 & .1 \\ .5 & .7 & .1 \\ .2 & .1 & .1\end{array}\right), \mu_{R_{2}}:\left(\begin{array}{ccc}.6 & .6 & .1 \\ .5 & .8 & .14 \\ .2 & .1 & .1\end{array}\right)$
$v_{R_{1}}:\left(\begin{array}{ccc}.2 & .1 & .6 \\ .2 & .15 & .5 \\ .6 & .5 & .6\end{array}\right), v_{R_{2}}:\left(\begin{array}{ccc}.15 & .1 & .55 \\ .2 & .1 & .5 \\ .6 & .6 & .5\end{array}\right)$

It could be easily proved that \circ is not commutative.
(ii) (a) can also be proved by another example.

Let $U=\{a, b, c\}$ and membership functions
of A, B, C be given by
$\mu_{A}(a)=\mu_{A}(b)=.96, \mu_{A}(c)=0$
$\mu_{B}(a)=\mu_{B}(b)=.95, \mu_{B}(c)=0$
$\mu_{C}(a)=\mu_{C}(b)=.92, \mu_{C}(c)=0$
Then, $\mu_{A \times B}:\left(\begin{array}{ccc}.95 & .95 & 0 \\ .95 & .95 & 0 \\ 0 & 0 & 0\end{array}\right), \mu_{B \times C}:\left(\begin{array}{ccc}.92 & .92 & 0 \\ .92 & .92 & 0 \\ 0 & 0 & 0\end{array}\right)$
Let $R_{1}: A \rightarrow B, R_{2}$ and $R_{3}: B \rightarrow C$ defined by
$\mu_{R_{1}}:\left(\begin{array}{ccc}.7 & .4 & 0 \\ .8 & .4 & 0 \\ 0 & 0 & 0\end{array}\right), \mu_{R_{2}}:\left(\begin{array}{ccc}.7 & .8 & 0 \\ .4 & .6 & 0 \\ 0 & 0 & 0\end{array}\right), \mu_{R 3}:\left(\begin{array}{ccc}.5 & .1 & 0 \\ .3 & .5 & 0 \\ 0 & 0 & 0\end{array}\right)$
With $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ as above one can check that
$R_{1} \circ\left(R_{2} * R_{3}\right)$ is not distributive where $*$ is any of $\cap,+, ., \bigcup, \cap, \square \quad$ and \otimes
(b) We can see that membership functions of
$R_{1} \circ\left(R_{2} \cup R_{3}\right)$ and $\quad\left(R_{1} \circ R_{2}\right) \cup\left(R_{1} \circ R_{3}\right)$
are equal as in (Chakraborthy et al., 1983)
The nonmembership function of $R_{1} \circ\left(R_{2} \cup R_{3}\right)$ is

$$
\begin{aligned}
& \min _{z \in U}\left[\max \left(v_{R_{1}}(x, z), v_{R_{2} \cup R_{3}}(z, y)\right)\right] \\
& =\min _{z \in U}\left[\max \left\{v_{R_{1}}(x, z), \min \left(v_{R_{2}}(z, y), v_{R_{3}}(z, y)\right)\right\}\right]
\end{aligned}
$$

For each z,
$\max \left\{v_{R_{1}}(x, z), \min \left(v_{R_{2}}(z, y), v_{R_{3}}(z, y)\right)\right\}$
$=\min \left\{\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right), \max \left(v_{R_{1}}(x, z), v_{R_{3}}(z, y)\right)\right\}$
$V_{R_{1}\left(R_{2} \cup R_{3}\right)}(x, y)$
$=\min _{Z \in U}\left[\min \left\{\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right), \max \left(v_{R_{1}}(x, z), v_{R_{3}}(z, y)\right)\right\}\right]$
$v_{\left(R_{1} \mathcal{R}_{2}\right) \cup\left(R_{1} \rho_{3} \mathcal{R}_{3}\right)}(x, y)$
$=\min \left[\min _{z \in U}\left\{\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right)\right\}, \min _{z \in U}\left\{\max \left(v_{R_{1}}(x, z), v_{R_{3}}(z, y)\right)\right\}\right]$
$=\min _{z \in U}\left[\min \left\{\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right), \max \left(v_{R_{1}}(x, z), v_{R_{3}}(z, y)\right)\right\}\right]$
$=v_{R_{1}\left(R_{2} \cup R_{3}\right)}(x, y)$
P-ISSN 0973-9157
E-ISSN 2393-9249
October to December 2017

[^0]: *Corresponding Author :
 email: anniestpc@gmail.com

